Package: selectiveInference (via r-universe)

November 1, 2024

Type Package
Title Tools for Post-Selection Inference
Version 1.2.5
Date 2019-09-04
Author Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid, Jelena Markovic
Maintainer Rob Tibshirani <tibs@stanford.edu></tibs@stanford.edu>
Depends glmnet, intervals, survival, adaptMCMC, MASS
Suggests Rmpfr
Description New tools for post-selection inference, for use with forward stepwise regression, least angle regression, the lasso, and the many means problem. The lasso function implements Gaussian, logistic and Cox survival models.
License GPL-2
RoxygenNote 5.0.1
LinkingTo Rcpp
Imports Rcpp
NeedsCompilation yes
Date/Publication 2019-09-07 07:00:02 UTC
Repository https://tibshirani.r-universe.dev
RemoteUrl https://github.com/cran/selectiveInference
RemoteRef HEAD
RemoteSha b9cad972ef3bd74019898e27bb11c501bd1f355e
Contents
debiasingMatrix 2 estimateSigma 4 factorDesign 6 fixedLassoInf 6

2 debiasingMatrix

	forwardStop	12
	fs	14
	fsInf	15
	groupfs	18
	groupfsInf	19
	lar	
	larInf	22
	manyMeans	25
	plot.fs	26
	plot.lar	27
	predict.fs	28
	predict.groupfs	29
	predict.lar	29
	randomizedLasso	30
	randomizedLassoInf	33
	ROSI	35
	scaleGroups	38
	selectiveInference	38
	TG.interval	12
	TG.limits	13
	TG.pvalue	15
ndex		17
ndex	TG.pvalue	

debiasingMatrix

Find an approximate inverse of a non-negative definite matrix.

Description

Find some rows of an approximate inverse of a non-negative definite symmetric matrix by solving optimization problem described in Javanmard and Montanari (2013). Can be used for approximate Newton step from some consistent estimator (such as the LASSO) to find a debiased solution.

Usage

debiasingMatrix 3

Arguments

Xinfo	Either a non-negative definite matrix $S=t(X)$ is_wide is TRUE, then Xinfo should be X , otherwise it should be S .
is_wide	Are we solving for rows of the debiasing matrix assuming it is a wide matrix so that $Xinfo=X$ and the non-negative definite matrix of interest is $t(X)$
nsample	Number of samples used in forming the cross-covariance matrix. Used for default value of the bound parameter.
rows	Which rows of the approximate inverse to compute.
verbose	Print out progress as rows are being computed.
bound	Initial bound parameter for each row. Will be changed if linesearch is TRUE.
linesearch	Run a line search to find as small as possible a bound parameter for each row?
scaling_factor	In the linesearch, the bound parameter is either multiplied or divided by this factor at each step.
max_active	How large an active set to consider in solving the problem with coordinate descent. Defaults to max(50, 0.3*nsample).
max_try	How many tries in the linesearch.
warn_kkt	Warn if the problem does not seem to be feasible after running the coordinate descent algorithm.
max_iter	How many full iterations to run of the coordinate descent for each value of the bound parameter.
kkt_stop	If TRUE, check to stop coordinate descent when KKT conditions are approximately satisfied.
parameter_stop	If TRUE, check to stop coordinate descent based on relative convergence of parameter vector, checked at geometrically spaced iterations 2 ^k .
objective_stop	If TRUE, check to stop coordinate descent based on relative decrease of objective value, checked at geometrically spaced iterations 2 ^k .
kkt_tol	Tolerance value for assessing whether KKT conditions for solving the dual problem and feasibility of the original problem.
parameter_tol	Tolerance value for assessing convergence of the problem using relative convergence of the parameter.
objective_tol	Tolerance value for assessing convergence of the problem using relative decrease of the objective.

4 estimateSigma

Details

This function computes an approximate inverse as described in Javanmard and Montanari (2013), specifically display (4). The problem is solved by considering a dual problem which has an objective similar to a LASSO problem and is solvable by coordinate descent. For some values of bound the original problem may not be feasible, in which case the dual problem has no solution. An attempt to detect this is made by stopping when the active set grows quite large, determined by max_active.

Value

M Rows of approximate inverse of Sigma.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Adel Javanmard and Andrea Montanari (2013). Confidence Intervals and Hypothesis Testing for High-Dimensional Regression. Arxiv: 1306.3171

Examples

```
set.seed(10)
n = 50
p = 100
X = matrix(rnorm(n * p), n, p)
S = t(X) %*% X / n
M = debiasingMatrix(S, FALSE, n, c(1,3,5))
M2 = debiasingMatrix(X, TRUE, n, c(1,3,5))
max(M - M2)
```

estimateSigma

Estimate the noise standard deviation in regression

Description

Estimates the standard deviation of the noise, for use in the selectiveInference package

Usage

```
estimateSigma(x, y, intercept=TRUE, standardize=TRUE)
```

Arguments

x Matrix of predictors (n by p) y Vector of outcomes (length n)

intercept Should glmnet be run with an intercept? Default is TRUE

standardize Should glmnet be run with standardized predictors? Default is TRUE

estimateSigma 5

Details

This function estimates the standard deviation of the noise, in a linear regresion setting. A lasso regression is fit, using cross-validation to estimate the tuning parameter lambda. With sample size n, yhat equal to the predicted values and df being the number of nonzero coefficients from the lasso fit, the estimate of sigma is sqrt(sum((y-yhat)^2) / (n-df-1)). Important: if you are using glmnet to compute the lasso estimate, be sure to use the settings for the "intercept" and "standardize" arguments in glmnet and estimateSigma. Same applies to fs or lar, where the argument for standardization is called "normalize".

Value

sigmahat The estimate of sigma

df The degrees of freedom of lasso fit used

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Stephen Reid, Jerome Friedman, and Rob Tibshirani (2014). A study of error variance estimation in lasso regression. arXiv:1311.5274.

```
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x***beta + sigma*rnorm(n)

# run forward stepwise
fsfit = fs(x,y)

# estimate sigma
sigmahat = estimateSigma(x,y)$sigmahat

# run sequential inference with estimated sigma
out = fsInf(fsfit,sigma=sigmahat)
out
```

factorDesign Expand a data frame with factors to form a design matrix with the full binary encoding of each factor.	ull
---	-----

Description

When using groupfs with factor variables call this function first to create a design matrix.

Usage

```
factorDesign(df)
```

Arguments

df

Data frame containing some columns which are factors.

Value

List containing

x Design matrix, the first columns contain any numeric variables from the original date frame. **index** Group membership indicator for expanded matrix.

Examples

```
## Not run:
fd = factorDesign(warpbreaks)
y = rnorm(nrow(fd$x))
fit = groupfs(fd$x, y, fd$index, maxsteps=2, intercept=F)
pvals = groupfsInf(fit)
## End(Not run)
```

 ${\tt fixedLassoInf}$

Inference for the lasso, with a fixed lambda

Description

Compute p-values and confidence intervals for the lasso estimate, at a fixed value of the tuning parameter lambda

Usage

```
fixedLassoInf(x,
              beta,
              lambda,
              family = c("gaussian", "binomial", "cox"),
              intercept=TRUE,
              add.targets=NULL,
              status=NULL,
              sigma=NULL,
              alpha=0.1,
              type=c("partial","full"),
              tol.beta=1e-5,
              tol.kkt=0.1,
              gridrange=c(-100,100),
              bits=NULL,
              verbose=FALSE,
              linesearch.try=10)
```

Arguments

beta

Matrix of predictors (n by p); Χ

Vector of outcomes (length n) y

> Estimated lasso coefficients (e.g., from glmnet). This is of length p (so the intercept is not included as the first component).

Be careful! This function uses the "standard" lasso objective

$$1/2||y-x\beta||_2^2 + \lambda ||\beta||_1$$
.

In contrast, glmnet multiplies the first term by a factor of 1/n. So after running glmnet, to extract the beta corresponding to a value lambda, you need to use beta = coef(obj, s=lambda/n)[-1], where obj is the object returned by glmnet (and [-1] removes the intercept, which glmnet always puts in the first component)

lambda Value of lambda used to compute beta. See the above warning

family Response type: "gaussian" (default), "binomial", or "cox" (for censored survival

data)

Estimate of error standard deviation. If NULL (default), this is estimated using sigma

the mean squared residual of the full least squares fit when $n \ge 2p$, and using the standard deviation of y when n < 2p. In the latter case, the user should use estimateSigma function for a more accurate estimate. Not used for family=

"binomial", or "cox"

alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each

tail)

intercept Was the lasso problem solved (e.g., by glmnet) with an intercept in the model?

Default is TRUE. Must be TRUE for "binomial" family. Not used for 'cox"

family, where no intercept is assumed.

add. targets Optional vector of predictors to be included as targets of inference, regardless

of whether or not they are selected by the lasso. Default is NULL.

status Censoring status for Cox model; 1=failurem 0=censored

type Contrast type for p-values and confidence intervals: default is "partial"—meaning

that the contrasts tested are the partial population regression coefficients, within the active set of predictors; the alternative is "full"—meaning that the full population regression coefficients are tested. The latter does not make sense when p

> n.

tol.beta Tolerance for determining if a coefficient is zero

tol.kkt Tolerance for determining if an entry of the subgradient is zero

gridrange Grid range for constructing confidence intervals, on the standardized scale

bits Number of bits to be used for p-value and confidence interval calculations. De-

fault is NULL, in which case standard floating point calculations are performed. When not NULL, multiple precision floating point calculations are performed with the specified number of bits, using the R package Rmpfr (if this package is not installed, then a warning is thrown, and standard floating point calculations are pursued). Note: standard double precision uses 53 bits so, e.g., a choice of 200 bits uses about 4 times double precision. The confidence interval computation is sometimes numerically challenging, and the extra precision can be helpful (though computationally more costly). In particular, extra precision might be tried if the values in the output columns of tailarea differ noticeably

from alpha/2.

verbose Print out progress along the way? Default is FALSE

linesearch.try When running type="full" (i.e. debiased LASSO) how many attempts in the line

search?

Details

This function computes selective p-values and confidence intervals for the lasso, given a fixed value of the tuning parameter lambda. Three different response types are supported: gaussian, binomial and Cox. The confidence interval construction involves numerical search and can be fragile: if the observed statistic is too close to either end of the truncation interval (vlo and vup, see references), then one or possibly both endpoints of the interval of desired coverage cannot be computed, and default to +/- Inf. The output tailarea gives the achieved Gaussian tail areas for the reported intervals—these should be close to alpha/2, and can be used for error-checking purposes.

Important!: Before running glmnet (or some other lasso-solver) x should be centered, that is x <- scale(X,TRUE,FALSE). In addition, if standardization of the predictors is desired, x should be scaled as well: x <- scale(x,TRUE,TRUE). Then when running glmnet, set standardize=F. See example below.

The penalty factor facility in glmmet—allowing different penalties lambda for each predictor, is not yet implemented in fixedLassoInf. However you can finesse this—see the example below. One caveat- using this approach, a penalty factor of zero (forcing a predictor in) is not allowed.

Note that the coefficients and standard errors reported are unregularized. Eg for the Gaussian, they are the usual least squares estimates and standard errors for the model fit to the active set from the lasso.

Value

type	Type of coefficients tested (partial or full)
lambda	Value of tuning parameter lambda used
pv	One-sided P-values for active variables, uses the fact we have conditioned on the sign.
ci	Confidence intervals
tailarea	Realized tail areas (lower and upper) for each confidence interval
vlo	Lower truncation limits for statistics
vup	Upper truncation limits for statistics
vmat	Linear contrasts that define the observed statistics
у	Vector of outcomes
vars	Variables in active set
sign	Signs of active coefficients
alpha	Desired coverage (alpha/2 in each tail)
sigma	Value of error standard deviation (sigma) used

Author(s)

call

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

The call to fixedLassoInf

References

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2013). Exact post-selection inference, with application to the lasso. arXiv:1311.6238.

Jonathan Taylor and Robert Tibshirani (2016) Post-selection inference for L1-penalized likelihood models. arXiv:1602.07358

```
set.seed(43)
n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)

beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

# first run glmnet
gfit = glmnet(x,y,standardize=FALSE)

# extract coef for a given lambda; note the 1/n factor!
# (and we don't save the intercept term)
```

```
lambda = .8
beta = coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE)[-1]
# compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta,lambda,sigma=sigma)
## as above, but use lar function instead to get initial
## lasso fit (should get same results)
lfit = lar(x,y,normalize=FALSE)
beta = coef(lfit, s=lambda, mode="lambda")
out2 = fixedLassoInf(x, y, beta, lambda, sigma=sigma)
## mimic different penalty factors by first scaling \boldsymbol{x}
 set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)
beta = c(3,2,rep(0,p-2))
y = x\%*\%beta + sigma*rnorm(n)
pf=c(rep(1,7),rep(.1,3)) #define penalty factors
pf=p*pf/sum(pf) # penalty factors should be rescaled so they sum to p
xs=scale(x,FALSE,pf) #scale cols of x by penalty factors
# first run glmnet
gfit = glmnet(xs, y, standardize=FALSE)
# extract coef for a given lambda; note the 1/n factor!
# (and we don't save the intercept term)
lambda = .8
beta_hat = coef(gfit, x=xs, y=y, s=lambda/n, exact=TRUE)[-1]
# compute fixed lambda p-values and selection intervals
out = fixedLassoInf(xs,y,beta_hat,lambda,sigma=sigma)
#rescale conf points to undo the penalty factor
out$ci=t(scale(t(out$ci),FALSE,pf[out$vars]))
out
#logistic model
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)
```

```
beta = c(3,2,rep(0,p-2))
y = x\%*\%beta + sigma*rnorm(n)
y=1*(y>mean(y))
# first run glmnet
gfit = glmnet(x,y,standardize=FALSE,family="binomial")
# extract coef for a given lambda; note the 1/n factor!
# (and here we DO include the intercept term)
lambda = .8
beta_hat = coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE)
# compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta_hat,lambda,family="binomial")
out
# Cox model
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p), n, p)
x = scale(x, TRUE, TRUE)
beta = c(3,2,rep(0,p-2))
tim = as.vector(x%*%beta + sigma*rnorm(n))
tim= tim-min(tim)+1
status=sample(c(0,1),size=n,replace=TRUE)
# first run glmnet
y = Surv(tim, status)
gfit = glmnet(x, y, standardize=FALSE, family="cox")
# extract coef for a given lambda; note the 1/n factor!
lambda = 1.5
beta_hat = as.numeric(coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE))
# compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x, tim, beta_hat, lambda, status=status, family="cox")
out
# Debiased lasso or "full"
n = 50
p = 100
sigma = 1
x = matrix(rnorm(n*p),n,p)
```

12 forwardStop

```
x = scale(x, TRUE, TRUE)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
# first run glmnet
gfit = glmnet(x, y, standardize=FALSE, intercept=FALSE)
# extract coef for a given lambda; note the 1/n factor!
# (and we don't save the intercept term)
lambda = 2.8
beta = coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE)[-1]
# compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x, y, beta, lambda, sigma=sigma, type='full', intercept=FALSE)
out
\# When n > p and "full" we use the full inverse
# instead of Javanmard and Montanari's approximate inverse
n = 200
p = 50
sigma = 1
x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)
beta = c(3,2,rep(0,p-2))
y = x\%*\%beta + sigma*rnorm(n)
# first run glmnet
gfit = glmnet(x, y, standardize=FALSE, intercept=FALSE)
# extract coef for a given lambda; note the 1/n factor!
# (and we don't save the intercept term)
lambda = 2.8
beta = coef(gfit, x=x, y=y, s=lambda/n, exact=TRUE)[-1]
# compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x, y, beta, lambda, sigma=sigma, type='full', intercept=FALSE)
out
```

forwardStop

ForwardStop rule for sequential p-values

Description

Computes the ForwardStop sequential stopping rule of G'Sell et al (2014)

forwardStop 13

Usage

```
forwardStop(pv, alpha=0.1)
```

Arguments

pv	Vector of **sequential** p-values, for example from fsInf or larInf
alpha	Desired type FDR level (between 0 and 1)

Details

Computes the ForwardStop sequential stopping rule of G'Sell et al (2014). Guarantees FDR control at the level alpha, for independent p-values.

Value

Step number for sequential stop.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Max Grazier G'Sell, Stefan Wager, Alexandra Chouldechova, and Rob Tibshirani (2014). Sequential selection procedures and Fflse Discovery Rate Control. arXiv:1309.5352. To appear in Journal of the Royal Statistical Society: Series B.

```
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

# run forward stepwise
fsfit = fs(x,y)

# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out = fsInf(fsfit)
out

# estimate optimal stopping point
forwardStop(out$pv, alpha=.10)
```

14 fs

fs	Forward stepwise regression	

Description

This function implements forward stepwise regression, for use in the selectiveInference package

Usage

```
fs(x, y, maxsteps=2000, intercept=TRUE, normalize=TRUE, verbose=FALSE)
```

Arguments

x Matrix of predictors (n by p)
 y Vector of outcomes (length n)
 maxsteps Maximum number of steps to take

intercept Should an intercept be included on the model? Default is TRUE

normalize Should the predictors be normalized? Default is TRUE. (Note: this argument

has no real effect on model selection since forward stepwise is scale invariant already; however, it is included for completeness, and to match the interface for

the lar function)

verbose Print out progress along the way? Default is FALSE

Details

This function implements forward stepwise regression, adding the predictor at each step that maximizes the absolute correlation between the predictors—once orthogonalized with respect to the current model—and the residual. This entry criterion is standard, and is equivalent to choosing the variable that achieves the biggest drop in RSS at each step; it is used, e.g., by the step function in R. Note that, for example, the lars package implements a stepwise option (with type="step"), but uses a (mildly) different entry criterion, based on maximal absolute correlation between the original (non-orthogonalized) predictors and the residual.

Value

action	Vector of predictors in order of entry
sign	Signs of coefficients of predictors, upon entry
df	Degrees of freedom of each active model
beta	Matrix of regression coefficients for each model along the path, one column per model
completepath	Was the complete stepwise path computed?
bls	If completepath is TRUE, the full least squares coefficients
Gamma	Matrix that captures the polyhedral selection at each step
nk	Number of polyhedral constraints at each step in path

fsInf 15

vreg	Matrix of linear contrasts that gives coefficients of variables to enter along the path
х	Matrix of predictors used
У	Vector of outcomes used
bx	Vector of column means of original x
by	Mean of original y
sx	Norm of each column of original x
intercept	Was an intercept included?
normalize	Were the predictors normalized?
call	The call to fs

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

See Also

```
fsInf, predict.fs, coef.fs, plot.fs
```

Examples

```
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

# run forward stepwise, plot results
fsfit = fs(x,y)
plot(fsfit)

# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out = fsInf(fsfit)
out
```

fsInf

Selective inference for forward stepwise regression

Description

Computes p-values and confidence intervals for forward stepwise regression

16 fsInf

Usage

```
fsInf(obj, sigma=NULL, alpha=0.1, k=NULL, type=c("active", "all", "aic"),
      gridrange=c(-100,100), bits=NULL, mult=2, ntimes=2, verbose=FALSE)
```

Arguments

Object returned by fs function obj

Estimate of error standard deviation. If NULL (default), this is estimated using sigma

the mean squared residual of the full least squares fit when $n \ge 2p$, and using the standard deviation of y when n < 2p. In the latter case, the user should use

estimateSigma function for a more accurate estimate

alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each

tail)

k See "type" argument below. Default is NULL, in which case k is taken to be the

the number of steps computed in the forward stepwise path

Type of analysis desired: with "active" (default), p-values and confidence intertype

vals are computed for each predictor as it is entered into the active step, all the way through k steps; with "all", p-values and confidence intervals are computed for all variables in the active model after k steps; with "aic", the number of steps k is first estimated using a modified AIC criterion, and then the same type of

analysis as in "all" is carried out for this particular value of k.

Note that the AIC scheme is defined to choose a number of steps k after which the AIC criterion increases ntimes in a row, where ntimes can be specified by the user (see below). Under this definition, the AIC selection event is characterizable as a polyhedral set, and hence the extra conditioning can be taken into account exactly. Also note that an analogous BIC scheme can be specified

through the mult argument (see below)

gridrange Grid range for constructing confidence intervals, on the standardized scale

bits Number of bits to be used for p-value and confidence interval calculations. De-

> fault is NULL, in which case standard floating point calculations are performed. When not NULL, multiple precision floating point calculations are performed with the specified number of bits, using the R package Rmpfr (if this package is not installed, then a warning is thrown, and standard floating point calculations are pursued). Note: standard double precision uses 53 bits so, e.g., a choice of 200 bits uses about 4 times double precision. The confidence interval computation is sometimes numerically challenging, and the extra precision can be helpful (though computationally more costly). In particular, extra precision might be tried if the values in the output columns of tailarea differ noticeably

from alpha/2.

mult Multiplier for the AIC-style penalty. Hence a value of 2 (default) gives AIC,

whereas a value of log(n) would give BIC

Number of steps for which AIC-style criterion has to increase before minimizing ntimes

point is declared

Print out progress along the way? Default is FALSE verbose

fsInf 17

Details

This function computes selective p-values and confidence intervals (selection intervals) for forward stepwise regression. The default is to report the results for each predictor after its entry into the model. See the "type" argument for other options. The confidence interval construction involves numerical search and can be fragile: if the observed statistic is too close to either end of the truncation interval (vlo and vup, see references), then one or possibly both endpoints of the interval of desired coverage cannot be computed, and default to +/- Inf. The output tailarea gives the achieved Gaussian tail areas for the reported intervals—these should be close to alpha/2, and can be used for error-checking purposes.

Value

type Type of analysis (active, all, or aic)

k Value of k specified in call

when type is "active", this is an estimated stopping point declared by forwardStop;

when type is "aic", this is the value chosen by the modified AIC scheme

pv One sided P-values for active variables, uses the sign that a variable entered the

model with.

ci Confidence intervals

tailarea Realized tail areas (lower and upper) for each confidence interval

vlo Lower truncation limits for statistics vup Upper truncation limits for statistics

vmat Linear contrasts that define the observed statistics

y Vector of outcomes

vars Variables in active set

sign Signs of active coefficients

alpha Desired coverage (alpha/2 in each tail)

sigma Value of error standard deviation (sigma) used

call The call to fsInf

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Ryan Tibshirani, Jonathan Taylor, Richard Lockhart, and Rob Tibshirani (2014). Exact post-selection inference for sequential regression procedures. arXiv:1401.3889.

Joshua Loftus and Jonathan Taylor (2014). A significance test for forward stepwise model selection. arXiv:1405.3920.

See Also

fs

18 groupfs

Examples

```
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x\%*\%beta + sigma*rnorm(n)
# run forward stepwise
fsfit = fs(x,y)
# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out.seq = fsInf(fsfit)
out.seq
# compute p-values and confidence intervals after AIC stopping
out.aic = fsInf(fsfit,type="aic")
out.aic
# compute p-values and confidence intervals after 5 fixed steps
out.fix = fsInf(fsfit,type="all",k=5)
out.fix
```

groupfs

Select a model with forward stepwise.

Description

This function implements forward selection of linear models almost identically to step with direction = "forward". The reason this is a separate function from fs is that groups of variables (e.g. dummies encoding levels of a categorical variable) must be handled differently in the selective inference framework.

Usage

```
groupfs(x, y, index, maxsteps, sigma = NULL, k = 2, intercept = TRUE,
  center = TRUE, normalize = TRUE, aicstop = 0, verbose = FALSE)
```

Arguments

X	Matrix of predictors (n by p).
У	Vector of outcomes (length n).
index	Group membership indicator of length p. Check that sort(unique(index)) = 1:G where G is the number of distinct groups.
maxsteps	Maximum number of steps for forward stepwise.

groupfsInf 19

sigma	Estimate of error standard deviation for use in AIC criterion. This determines the relative scale between RSS and the degrees of freedom penalty. Default is NULL corresponding to unknown sigma. When NULL, link{groupfsInf} performs truncated F inference instead of truncated χ . See extractAIC for details on the AIC criterion.
k	Multiplier of model size penalty, the default is $k = 2$ for AIC. Use $k = \log(n)$ for BIC, or $k = 2\log(p)$ for RIC (best for high dimensions, when $p > n$). If $G < p$ then RIC may be too restrictive and it would be better to use $\log(G) < k < 2\log(p)$.
intercept	Should an intercept be included in the model? Default is TRUE. Does not count as a step.
center	Should the columns of the design matrix be centered? Default is TRUE.
normalize	Should the design matrix be normalized? Default is TRUE.
aicstop	Early stopping if AIC increases. Default is 0 corresponding to no early stopping. Positive integer values specify the number of times the AIC is allowed to increase in a row, e.g. with aicstop = 2 the algorithm will stop if the AIC criterion increases for 2 steps in a row. The default of step corresponds to aicstop = 1.
verbose	Print out progress along the way? Default is FALSE.

Value

An object of class "groupfs" containing information about the sequence of models in the forward stepwise algorithm. Call the function groupfsInf on this object to compute selective p-values.

See Also

```
groupfsInf, factorDesign.
```

Examples

```
x = matrix(rnorm(20*40), nrow=20)
index = sort(rep(1:20, 2))
y = rnorm(20) + 2 * x[,1] - x[,4]
fit = groupfs(x, y, index, maxsteps = 5)
out = groupfsInf(fit)
out
```

groupfsInf

Compute selective p-values for a model fitted by groupfs.

Description

Computes p-values for each group of variables in a model fitted by groupfs. These p-values adjust for selection by truncating the usual χ^2 statistics to the regions implied by the model selection event. If the sigma to groupfs was NULL then groupfsInf uses truncated F statistics instead of truncated F. The sigma argument to groupfsInf allows users to override and use F, but this is not recommended unless F can be estimated well (i.e. F > F).

20 lar

Usage

```
groupfsInf(obj, sigma = NULL, verbose = TRUE)
```

Arguments

obj Object returned by groupfs function

sigma Estimate of error standard deviation. Default is NULL and in this case groupfs-

Inf uses the value of sigma specified to groupfs.

verbose Print out progress along the way? Default is TRUE.

Value

An object of class "groupfsInf" containing selective p-values for the fitted model obj. For comparison with fsInf, note that the option type = "active" is not available.

vars Labels of the active groups in the order they were included.

pv Selective p-values computed from appropriate truncated distributions.

sigma Estimate of error variance used in computing p-values.

TC or TF Observed value of truncated χ or F.

df Rank of group of variables when it was added to the model.

support List of intervals defining the truncation region of the corresponding statistic.

lar Least angle regression

Description

This function implements least angle regression, for use in the selectiveInference package

Usage

```
lar(x, y, maxsteps=2000, minlam=0, intercept=TRUE, normalize=TRUE,
    verbose=FALSE)
```

Arguments

X	Matrix of predictors (n by p)
у	Vector of outcomes (length n)
maxsteps	Maximum number of steps to take
minlam	Minimum value of lambda to conside

intercept Should an intercept be included on the model? Default is TRUE

normalize Should the predictors be normalized? Default is TRUE verbose Print out progress along the way? Default is FALSE

lar 21

Details

The least angle regression algorithm is described in detail by Efron et al. (2002). This function should match (in terms of its output) that from the lars package, but returns additional information (namely, the polyhedral constraints) needed for the selective inference calculations.

Value

lambda	Values of lambda (knots) visited along the path
action	Vector of predictors in order of entry
sign	Signs of coefficients of predictors, upon entry
df	Degrees of freedom of each active model
beta	Matrix of regression coefficients for each model along the path, one model per column
completepath	Was the complete stepwise path computed?
bls	If completepath is TRUE, the full least squares coefficients
Gamma	Matrix that captures the polyhedral selection at each step
nk	Number of polyhedral constraints at each step in path
vreg	Matrix of linear contrasts that gives coefficients of variables to enter along the path
mp	Value of M+ (for internal use with the spacing test)
X	Matrix of predictors used
У	Vector of outcomes used
bx	Vector of column means of original x
by	Mean of original y
sx	Norm of each column of original x
intercept	Was an intercept included?
normalize	Were the predictors normalized?

Author(s)

call

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Max G'Sell, Joshua Loftus, Stephen Reid

References

Brad Efron, Trevor Hastie, Iain Johnstone, and Rob Tibshirani (2002). Least angle regression. Annals of Statistics (with discussion).

See also the descriptions in Trevor Hastie, Rob Tibshirani, and Jerome Friedman (2002, 2009). Elements of Statistical Learning.

See Also

```
larInf, predict.lar, coef.lar, plot.lar
```

The call to lar

22 larInf

Examples

```
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

# run LAR, plot results
larfit = lar(x,y)
plot(larfit)

# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out = larInf(larfit)
out
```

larInf

Selective inference for least angle regression

Description

Computes p-values and confidence intervals for least angle regression

Usage

Arguments

obj	Object returned by lar function (not the lars function!)
sigma	Estimate of error standard deviation. If NULL (default), this is estimated using the mean squared residual of the full least squares fit when $n \ge 2p$, and using the standard deviation of y when $n < 2p$. In the latter case, the user should use estimateSigma function for a more accurate estimate
alpha	Significance level for confidence intervals (target is miscoverage alpha/2 in each tail)
k	See "type" argument below. Default is NULL, in which case k is taken to be the the number of steps computed in the least angle regression path
type	Type of analysis desired: with "active" (default), p-values and confidence intervals are computed for each predictor as it is entered into the active step, all the way through k steps; with "all", p-values and confidence intervals are computed for all variables in the active model after k steps; with "aic", the number of steps k is first estimated using a modified AIC criterion, and then the same type of analysis as in "all" is carried out for this particular value of k.

larInf 23

Note that the AIC scheme is defined to choose a number of steps k after which the AIC criterion increases ntimes in a row, where ntimes can be specified by the user (see below). Under this definition, the AIC selection event is characterizable as a polyhedral set, and hence the extra conditioning can be taken into account exactly. Also note that an analogous BIC scheme can be specified through the mult argument (see below)

gridrange Grid range for constructing confidence intervals, on the standardized scale

bits Number of bits to be used for p-value and confidence interval calculations. De-

fault is NULL, in which case standard floating point calculations are performed. When not NULL, multiple precision floating point calculations are performed with the specified number of bits, using the R package Rmpfr (if this package is not installed, then a warning is thrown, and standard floating point calculations are pursued). Note: standard double precision uses 53 bits so, e.g., a choice of 200 bits uses about 4 times double precision. The confidence interval computation is sometimes numerically challenging, and the extra precision can be helpful (though computationally more costly). In particular, extra precision might be tried if the values in the output columns of tailarea differ noticeably

from alpha/2.

mult Multiplier for the AIC-style penalty. Hence a value of 2 (default) gives AIC,

whereas a value of log(n) would give BIC

ntimes Number of steps for which AIC-style criterion has to increase before minimizing

point is declared

verbose Print out progress along the way? Default is FALSE

Details

This function computes selective p-values and confidence intervals (selection intervals) for least angle regression. The default is to report the results for each predictor after its entry into the model. See the "type" argument for other options. The confidence interval construction involves numerical search and can be fragile: if the observed statistic is too close to either end of the truncation interval (vlo and vup, see references), then one or possibly both endpoints of the interval of desired coverage cannot be computed, and default to +/- Inf. The output tailarea gives the achieved Gaussian tail areas for the reported intervals—these should be close to alpha/2, and can be used for error-checking purposes.

Value

type Type of analysis (active, all, or aic)

k Value of k specified in call

khat When type is "active", this is an estimated stopping point declared by forwardStop;

when type is "aic", this is the value chosen by the modified AIC scheme

pv P-values for active variables

ci Confidence intervals

tailarea Realized tail areas (lower and upper) for each confidence interval

vlo Lower truncation limits for statistics

24 larInf

Upper truncation limits for statistics vup Linear contrasts that define the observed statistics vmat Vector of outcomes pv.spacing P-values from the spacing test (here M+ is used) P-values from the modified form of the spacing test (here M+ is replaced by the pv.modspac next knot) P-values from covariance test pv.covtest vars Variables in active set Signs of active coefficients sign Desired coverage (alpha/2 in each tail) alpha Value of error standard deviation (sigma) used sigma

Author(s)

call

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

The call to larInf

References

Ryan Tibshirani, Jonathan Taylor, Richard Lockhart, and Rob Tibshirani (2014). Exact post-selection inference for sequential regression procedures. arXiv:1401.3889.

See Also

lar

```
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x**beta + sigma*rnorm(n)

# run LAR
larfit = lar(x,y)

# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out.seq = larInf(larfit)
out.seq

# compute p-values and confidence intervals after AIC stopping
out.aic = larInf(larfit,type="aic")
out.aic
```

manyMeans 25

```
# compute p-values and confidence intervals after 5 fixed steps
out.fix = larInf(larfit,type="all",k=5)
out.fix
```

manyMeans

Selective inference for many normal means

Description

Computes p-values and confidence intervals for the largest k among many normal means

Usage

```
manyMeans(y, alpha=0.1, bh.q=NULL, k=NULL, sigma=1, verbose=FALSE)
```

Arguments

y Vector of outcomes (length n)

alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each tail)

bh.q q parameter for BH(q) procedure

k Number of means to consider

sigma Estimate of error standard deviation

verbose Print out progress along the way? Default is FALSE

Details

This function compute p-values and confidence intervals for the largest k among many normal means. One can specify a fixed number of means k to consider, or choose the number to consider via the BH rule.

Value

mu.hat	Vector of length n containing the estimated signal sizes. If a sample element is not selected, then its signal size estimate is $\bf 0$
selected.set	Indices of the vector y of the sample elements that were selected by the procedure (either $BH(q)$ or top- K). Labelled "Selind" in output table.
pv	P-values for selected signals
ci	Confidence intervals
method	Method used to choose number of means
sigma	Value of error standard deviation (sigma) used
bh.q	BH q-value used
k	Desired number of means
threshold	Computed cutoff
call	The call to manyMeans

26 plot.fs

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Stephen Reid, Jonathan Taylor, and Rob Tibshirani (2014). Post-selection point and interval estimation of signal sizes in Gaussian samples. arXiv:1405.3340.

Examples

```
set.seed(12345)
n = 100
mu = c(rep(3,floor(n/5)), rep(0,n-floor(n/5)))
y = mu + rnorm(n)
out = manyMeans(y, bh.q=0.1)
out
```

plot.fs

Plot function for forward stepwise regression

Description

Plot coefficient profiles along the forward stepwise path

Usage

```
## S3 method for class 'fs'
plot(x, breaks=TRUE, omit.zeros=TRUE, var.labels=TRUE, ...)
```

Arguments

X	Object returned by a call to fs function
breaks	Should vertical lines be drawn at each break point in the piecewise linear coefficient paths? Default is TRUE
omit.zeros	Should segments of the coefficients paths that are equal to zero be omitted (to avoid clutter in the figure)? Default is TRUE
var.labels	Should paths be labelled with corresponding variable numbers? Default is TRUE
	Additional arguments for plotting

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

plot.lar 27

Examples

```
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
# run forward stepwise, plot results
fsfit = fs(x,y)
plot(fsfit)
```

plot.lar

Plot function for least angle regression

Description

Plot coefficient profiles along the LAR path

Usage

Arguments

Х	Object returned by a call to lar function (not the lars function!)
xvar	Either "norm" or "step" or "lambda", determining what is plotted on the x-axis
breaks	Should vertical lines be drawn at each break point in the piecewise linear coefficient paths? Default is TRUE
omit.zeros	Should segments of the coefficients paths that are equal to zero be omitted (to avoid clutter in the figure)? Default is TRUE
var.labels	Should paths be labelled with corresponding variable numbers? Default is TRUE
	Additional arguments for plotting

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

28 predict.fs

Examples

```
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
# run LAR, plot results
larfit = lar(x,y)
plot(larfit)
```

predict.fs

Prediction and coefficient functions for forward stepwise regression

Description

Make predictions or extract coefficients from a forward stepwise object

Usage

```
## $3 method for class 'fs'
predict(object, newx, s, ...)
## $3 method for class 'fs'
coef(object, s, ...)
```

Arguments

object	Object returned by a call to fs function
newx	Matrix of x values at which the predictions are desired. If NULL, the x values from forward stepwise fitting are used
S	Step number(s) at which predictions or coefficients are desired
	Additional arguments

Value

Either a vector/matrix of predictions, or a vector/matrix of coefficients.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

predict.groupfs 29

Examples

```
set.seed(33)
n = 200
p = 20
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(rep(3,10),rep(0,p-10))
y = x%*%beta + sigma*rnorm(n)

# run forward stepwise and predict functions
obj = fs(x,y)
fit = predict(obj,x,s=3)
```

predict.groupfs

Prediction and coefficient functions for groupfs.

Description

Make predictions or extract coefficients from a groupfs forward stepwise object.

Usage

```
## S3 method for class 'groupfs'
predict(object, newx)
```

Arguments

object Object returned by a call to groupfs.

newx Matrix of x values at which the predictions are desired. If NULL, the x values

from groupfs fitting are used.

Value

A vector of predictions or a vector of coefficients.

predict.lar

Prediction and coefficient functions for least angle regression

Description

Make predictions or extract coefficients from a least angle regression object

Usage

```
## S3 method for class 'lar'
predict(object, newx, s, mode=c("step","lambda"), ...)
## S3 method for class 'lar'
coef(object, s, mode=c("step","lambda"), ...)
```

30 randomizedLasso

Arguments

object	Object returned by a call to lar function (not the lars function!)
newx	Matrix of x values at which the predictions are desired. If NULL, the x values from least angle regression fitting are used
S	Step number(s) or lambda value(s) at which predictions or coefficients are desired
mode	Either "step" or "lambda", determining the role of s (above)
	Additional arguments

Value

Either a vector/matrix of predictions, or a vector/matrix of coefficients.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

Examples

```
set.seed(33)
n = 200
p = 20
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(rep(3,10),rep(0,p-10))
y = x%*%beta + sigma*rnorm(n)

# run lar and predict functions
obj = lar(x,y)
fit = predict(obj,x,s=3)
```

randomizedLasso

Inference for the randomized lasso, with a fixed lambda

Description

Solve a randomly perturbed LASSO problem.

Usage

randomizedLasso 31

> kkt_tol=1.e-4, parameter_tol=1.e-8, objective_tol=1.e-8, objective_stop=FALSE, kkt_stop=TRUE, parameter_stop=TRUE)

Arguments

Χ Matrix of predictors (n by p); У Vector of outcomes (length n) lam Value of lambda used to compute beta. See the above warning Be careful! This

function uses the "standard" lasso objective

 $1/2||y-x\beta||_2^2 + \lambda ||\beta||_1$.

In contrast, glmnet multiplies the first term by a factor of 1/n. So after running glmnet, to extract the beta corresponding to a value lambda, you need to use beta = coef(obj, s=lambda/n)[-1], where obj is the object returned by glmnet (and [-1] removes the intercept, which glmnet always puts in the first

component)

family Response type: "gaussian" (default), "binomial".

noise_scale Scale of Gaussian noise added to objective. Default is 0.5 * sd(y) times the sqrt

of the mean of the trace of X^TX.

A small "elastic net" or ridge penalty is added to ensure the randomized problem ridge_term

has a solution. 0.5 * sd(y) times the sqrt of the mean of the trace of X^TX

divided by sqrt(n).

How many rounds of updates used of coordinate descent in solving randomized max_iter

LASSO.

kkt_tol Tolerance for checking convergence based on KKT conditions.

Tolerance for checking convergence based on convergence of parameters. parameter_tol objective_tol Tolerance for checking convergence based on convergence of objective value.

kkt_stop Should we use KKT check to determine when to stop?

Should we use convergence of parameters to determine when to stop? parameter_stop objective_stop Should we use convergence of objective value to determine when to stop?

Details

For family="gaussian" this function uses the "standard" lasso objective

 $1/2||y - x\beta||_2^2 + \lambda ||\beta||_1$

and adds a term

$$-\omega^T \beta + \frac{\epsilon}{2} \|\beta\|_2^2$$

where omega is drawn from IID normals with standard deviation noise_scale and epsilon given by ridge_term. See below for default values of noise_scale and ridge_term.

For family="binomial", the squared error loss is replaced by the negative of the logistic loglikelihood.

32 randomizedLasso

Value

X Design matrix.y Response vector.

lam Vector of penalty parameters.
family Family: "gaussian" or "binomial".

active_set Set of non-zero coefficients in randomized solution that were penalized. Integers

from 1:p.

inactive_set Set of zero coefficients in randomized solution. Integers from 1:p.

unpenalized_set

Set of non-zero coefficients in randomized solution that were not penalized. In-

tegers from 1:p.

sign_soln The sign pattern of the randomized solution.

full_law List describing sampling parameters for conditional law of all optimization vari-

ables given the data in the LASSO problem.

conditional_law

List describing sampling parameters for conditional law of only the scaling vari-

ables given the data and the observed subgradient in the LASSO problem.

internal_transform

Affine transformation describing relationship between internal representation of the data and the data component of score of the likelihood at the unregularized

MLE based on the sign_vector (a.k.a. relaxed LASSO).

observed_raw Data component of the score at the unregularized MLE.

noise_scale SD of Gaussian noise used to draw the perturbed objective.

soln The randomized solution. Inference is made conditional on its sign vector (so

no more snooping of this value is formally permitted.) If condition_subgrad

== TRUE when sampling, then we may snoop on the observed subgradient.

perturb The random vector in the linear term added to the objective.

Author(s)

Jelena Markovic, Jonathan Taylor

References

Xiaoying Tian, and Jonathan Taylor (2015). Selective inference with a randomized response. arxiv.org:1507.06739

Xiaoying Tian, Snigdha Panigrahi, Jelena Markovic, Nan Bi and Jonathan Taylor (2016). Selective inference after solving a convex problem. arxiv:1609.05609

```
set.seed(43)
n = 50
p = 10
sigma = 0.2
```

randomizedLassoInf 33

```
lam = 0.5

X = matrix(rnorm(n*p), n, p)
X = scale(X, TRUE, TRUE) / sqrt(n-1)

beta = c(3,2,rep(0,p-2))
y = X%*%beta + sigma*rnorm(n)

result = randomizedLasso(X, y, lam)
```

randomizedLassoInf

Inference for the randomized lasso, with a fixed lambda

Description

Compute p-values and confidence intervals based on selecting an active set with the randomized lasso, at a fixed value of the tuning parameter lambda and using Gaussian randomization.

Usage

Arguments

rand_lasso_soln

A randomized lasso solution as returned by randomizedLasso.

targets

If not NULL, should be a list with entries observed_target, cov_target, crosscov_target_internal. The observed_target should be (pre-selection) asymptotically Gaussian around targeted parameters. The quantity cov_target should be an estimate of the (pre-selection) covariance of observed_target. Finally, crosscov_target_internal should be an estimate of the (pre-selection) covariance of observed_target and the internal representation of the data of the LASSO. For both "gaussian" and "binomial", this is the vector

$$\hat{\beta}_{E,MLE}, X_{-E}^T(y - \mu(X_E \hat{\beta}_{E,MLE}))$$

For example, this cross-covariance could be estimated by jointly bootstrapping the target of interest and the above vector.

level

Level for confidence intervals.

sampler

Which sampler to use – default is a no-rejection sampler. Otherwise use MCMC from the adaptMCMC package.

34 randomizedLassoInf

nsample Number of samples of optimization variables to sample.

burnin How many samples of optimization variable to discard (should be less than

nsample).

opt_samples Optional sample of optimization variables. If not NULL then no MCMC will be

run.

Details

This function computes selective p-values and confidence intervals for a randomized version of the lasso, given a fixed value of the tuning parameter lambda.

Value

targets A list with entries observed_target, cov_target, crosscov_target_internal.

See argument description above.

pvalues P-values testing hypotheses that each specific target is 0.

ci Confidence interval for parameters determined by targets.

Author(s)

Jelena Markovic, Jonathan Taylor

References

Jelena Markovic and Jonathan Taylor (2016). Bootstrap inference after using multiple queries for model selection. arxiv.org:1612.07811

Xiaoying Tian and Jonathan Taylor (2015). Selective inference with a randomized response. arxiv.org:1507.06739

Xiaoying Tian, Snigdha Panigrahi, Jelena Markovic, Nan Bi and Jonathan Taylor (2016). Selective inference after solving a convex problem. arxiv.org:1609.05609

```
set.seed(43)
n = 50
p = 10
sigma = 0.2
lam = 0.5

X = matrix(rnorm(n*p), n, p)
X = scale(X, TRUE, TRUE) / sqrt(n-1)

beta = c(3,2,rep(0,p-2))
y = X%*%beta + sigma*rnorm(n)

result = randomizedLasso(X, y, lam)
inf_result = randomizedLassoInf(result)
```

ROSI 35

ROSI

Relevant One-step Selective Inference for the LASSO

Description

Compute p-values and confidence intervals for the lasso estimate, at a fixed value of the tuning parameter lambda using the "relevant" conditioning event of arxiv.org/1801.09037.

Usage

```
ROSI(X,
    y,
    soln,
    lambda,
    penalty_factor=NULL,
    dispersion=1,
    family=c('gaussian', 'binomial'),
    solver=c('QP', 'glmnet'),
    construct_ci=TRUE,
    debiasing_method=c("JM", "BN"),
    verbose=FALSE,
    level=0.9,
    use_debiased=TRUE)
```

Arguments

X Matrix of predictors (n by p);y Vector of outcomes (length n)

soln Estimated lasso coefficients (e.g., from glmnet). This is of length p (so the

intercept is not included as the first component).

Be careful! This function uses the "standard" lasso objective

$$1/2||y - X\beta||_2^2 + \lambda ||\beta||_1.$$

In contrast, glmnet multiplies the first term by a factor of 1/n. So after running glmnet, to extract the beta corresponding to a value lambda, you need to use beta = coef(obj, s=lambda/n)[-1], where obj is the object returned by glmnet (and [-1] removes the intercept, which glmnet always puts in the first component)

lambda Value of lambda used to compute beta. See the above warning

penalty_factor Penalty factor as used by glmnet. Actual penalty used in solving the problem is

$$\lambda \cdot \sum_{i=1}^{p} f_i |\beta_i|$$

with f being the penalty_factor. Defaults to vector of 1s.

36 ROSI

dispersion Estimate of dispersion in the GLM. Can be taken to be 1 for logisitic and should

be an estimate of the error variance for the Gaussian.

family Family used for likelihood.

solver Solver used to solve restricted problems needed to find truncation set. Each

active variable requires solving a new LASSO problem obtained by zeroing out one coordinate of original problem. The "QP" choice uses coordinate descent for a specific value of lambda, rather than glmnet which would solve for a new

path each time.

construct_ci Report confidence intervals or just p-values?

debiasing_method

Which method should be used for debiasing? Choices are "JM" (Javanmard,

Montanari) or "BN" (method described in arxiv.org/1703.03282).

verbose Print out progress along the way? Default is FALSE.

level Confidence level for intervals.

use_debiased Use the debiased estimate of the parameter or not. When FALSE, this is the

method desribed in arxiv.org/1801.09037. The default TRUE often produces noticably shorter intervals and more powerful tests when p is comparable to n. Ignored when n<p and set to TRUE. Also note that with "BN" as debiasing

method and n > p, this agrees with method in arxiv.org/1801.09037.

Details

???

Value

active_set Active set of LASSO.

pvalues Two-sided P-values for active variables.

intervals Confidence intervals

estimate Relaxed (i.e. unshrunk) selected estimates.

std_err Standard error of relaxed estimates (pre-selection).

dispersion Dispersion parameter.

lower_trunc Lower truncation point. The estimates should be outside the interval formed by

the lower and upper truncation poitns.

upper_trunc Lower truncation point. The estimates should be outside the interval formed by

the lower and upper truncation poitns.

lambda Value of tuning parameter lambda used.
penalty_factor Penalty factor used for solving problem.

level Confidence level.

call The call to fixedLassoInf.

Author(s)

Jelena Markovic, Jonathan Taylor

ROSI 37

References

Keli Liu, Jelena Markovic, Robert Tibshirani. More powerful post-selection inference, with application to the Lasso. arXiv:1801.09037

Tom Boot, Didier Nibbering. Inference in high-dimensional linear regression models. arXiv:1703.03282

```
library(selectiveInference)
library(glmnet)
set.seed(43)
n = 100
p = 200
s = 2
sigma = 1
x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)
beta = c(rep(10, s), rep(0,p-s)) / sqrt(n)
y = x %*% beta + sigma*rnorm(n)
# first run glmnet
gfit = glmnet(x,y,standardize=FALSE)
# extract coef for a given lambda; note the 1/n factor!
# (and we don't save the intercept term)
lambda = 4 * sqrt(n)
lambda_glmnet = 4 / sqrt(n)
beta = selectiveInference:::solve_problem_glmnet(x,
                                                  lambda_glmnet,
                                                  penalty_factor=rep(1, p),
                                                  family="gaussian")
# compute fixed lambda p-values and selection intervals
out = ROSI(x,
           у,
           beta,
           lambda,
           dispersion=sigma^2)
out
# an alternate approximate inverse from Boot and Nibbering
out = ROSI(x,
           beta,
           lambda,
           dispersion=sigma^2,
           debiasing_method="BN")
out
```

1 0	
scaleGrou	ps

Center and scale design matrix by groups

Description

For internal use by groupfs.

Usage

```
scaleGroups(x, index, center = TRUE, normalize = TRUE)
```

Arguments

x Design matrix.

index Group membership indicator of length p.

center Center groups, default is TRUE.

normalize Scale groups by Frobenius norm, default is TRUE.

Value

x Optionally centered/scaled design matrix.

xm Means of groups in original design matrix.

xs Frobenius norms of groups in original design matrix.

selectiveInference

Tools for selective inference

Description

Functions to perform post-selection inference for forward stepwise regression, least angle regression, the lasso and the many normal means problem. The lasso function also supports logistic regression and the Cox model.

Details

Package: selectiveInference

Type: Package License: GPL-2

This package provides tools for inference after selection, in forward stepwise regression, least angle regression, the lasso, and the many normal means problem. The functions compute p-values and selection intervals that properly account for the inherent selection carried out by the procedure. These have exact finite sample type I error and coverage under Gaussian errors. For the logistic and Cox familes (fixedLassoInf), the coverage is asymptotically valid

This R package was developed as part of the selective inference software project in Python and R:

```
https://github.com/selective-inference
```

Some of the R code in this work is a modification of Python code from this repository. Here is the current selective inference software team:

Yuval Benjamini, Leonard Blier, Will Fithian, Jason Lee, Joshua Loftus, Joshua Loftus, Stephen Reid, Dennis Sun, Yuekai Sun, Jonathan Taylor, Xiaoying Tian, Ryan Tibshirani, Rob Tibshirani

The main functions included in the package are: fs, fsInf, lar, larInf, fixedLassoInf, manyMeans

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

Maintainer: Rob Tibshirani <tibs@stanford.edu>

References

Ryan Tibshirani, Jonathan Taylor, Richard Lockhart, and Rob Tibshirani (2014). Exact post-selection inference for sequential regression procedures. arXiv:1401.3889.

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2013). Exact post-selection inference, with application to the lasso. arXiv:1311.6238.

Stephen Reid, Jonathan Taylor, and Rob Tibshirani (2014). Post-selection point and interval estimation of signal sizes in Gaussian samples. arXiv:1405.3340.

Jonathan Taylor and Robert Tibshirani (2016) Post-selection inference for L1-penalized likelihood models. arXiv:1602.07358

```
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
```

```
# run forward stepwise
fsfit = fs(x,y)
# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out.seq = fsInf(fsfit)
out.seq
# compute p-values and confidence intervals after AIC stopping
out.aic = fsInf(fsfit,type="aic")
out.aic
# compute p-values and confidence intervals after 5 fixed steps
out.fix = fsInf(fsfit,type="all",k=5)
out.fix
## NOT RUN---lasso at fixed lambda- Gaussian family
## first run glmnet
# gfit = glmnet(x,y)
## extract coef for a given lambda; note the 1/n factor!
## (and we don't save the intercept term)
# lambda = .1
# beta = coef(gfit, s=lambda/n, exact=TRUE)[-1]
## compute fixed lambda p-values and selection intervals
# out = fixedLassoInf(x,y,beta,lambda,sigma=sigma)
# out
#lasso at fixed lambda- logistic family
#set.seed(43)
 p = 10
    sigma = 1
     x = matrix(rnorm(n*p),n,p)
    x=scale(x,TRUE,TRUE)
 #
#
     beta = c(3,2,rep(0,p-2))
     y = x%*%beta + sigma*rnorm(n)
     y=1*(y>mean(y))
     # first run glmnet
     gfit = glmnet(x,y,standardize=FALSE,family="binomial")
     # extract coef for a given lambda; note the 1/n factor!
     # (and here we DO include the intercept term)
     lambda = .8
     beta = coef(gfit, s=lambda/n, exact=TRUE)
     # compute fixed lambda p-values and selection intervals
     out = fixedLassoInf(x,y,beta,lambda,family="binomial")
     out
```

```
##lasso at fixed lambda- Cox family
#set.seed(43)
     n = 50
     p = 10
     sigma = 1
   x = matrix(rnorm(n*p),n,p)
 # x=scale(x,TRUE,TRUE)
 #
     beta = c(3,2,rep(0,p-2))
     tim = as.vector(x%*%beta + sigma*rnorm(n))
 # tim= tim-min(tim)+1
#status=sample(c(0,1),size=n,replace=T)
     # first run glmnet
   # gfit = glmnet(x,Surv(tim,status),standardize=FALSE,family="cox")
    # extract coef for a given lambda; note the 1/n factor!
    lambda = 1.5
 # beta = as.numeric(coef(gfit, s=lambda/n, exact=TRUE))
    # compute fixed lambda p-values and selection intervals
  # out = fixedLassoInf(x,tim,beta,lambda,status=status,family="cox")
  # out
## NOT RUN---many normal means
# set.seed(12345)
# n = 100
# mu = c(rep(3,floor(n/5)), rep(0,n-floor(n/5)))
\# y = mu + rnorm(n)
# out = manyMeans(y, bh.q=0.1)
## NOT RUN---forward stepwise with groups
# set.seed(1)
\# n = 20
\# p = 40
# x = matrix(rnorm(n*p), nrow=n)
# index = sort(rep(1:(p/2), 2))
y = rnorm(n) + 2 * x[,1] - x[,4]
# fit = groupfs(x, y, index, maxsteps = 5)
# out = groupfsInf(fit)
# out
## NOT RUN---estimation of sigma for use in fsInf
## (or larInf or fixedLassoInf)
# set.seed(33)
# n = 50
\# p = 10
\# sigma = 1
# x = matrix(rnorm(n*p),n,p)
# beta = c(3,2,rep(0,p-2))
y = x\%*\%beta + sigma*rnorm(n)
```

42 TG.interval

```
## run forward stepwise
# fsfit = fs(x,y)

## estimate sigma
# sigmahat = estimateSigma(x,y)$sigmahat

## run sequential inference with estimated sigma
# out = fsInf(fit,sigma=sigmahat)
# out
```

TG.interval

Truncated Gaussian confidence interval.

Description

Compute truncated Gaussian interval of Lee et al. (2016) with arbitrary affine selection and covariance. Z should satisfy A

Usage

```
TG.interval(Z, A, b, eta, Sigma=NULL, alpha=0.1,
    gridrange=c(-100,100),
        gridpts=100,
        griddepth=2,
        flip=FALSE,
        bits=NULL)
```

Arguments

Z	Observed data (assumed to follow N(mu, Sigma) with sum(eta*mu)=null_value)
Α	Matrix specifiying affine inequalities AZ <= b
b	Offsets in the affine inequalities $AZ \le b$.
eta	Determines the target sum(eta*mu) and estimate sum(eta*Z).
Sigma	Covariance matrix of Z. Defaults to identity.
alpha	Significance level for confidence intervals (target is miscoverage alpha/2 in each tail)
gridrange	Grid range for constructing confidence intervals, on the standardized scale.
gridpts	???????
griddepth	???????
flip	???????
bits	Number of bits to be used for p-value and confidence interval calculations. Default is NULL, in which case standard floating point calculations are performed.

When not NULL, multiple precision floating point calculations are performed with the specified number of bits, using the R package Rmpfr (if this package

TG.limits 43

is not installed, then a warning is thrown, and standard floating point calculations are pursued). Note: standard double precision uses 53 bits so, e.g., a choice of 200 bits uses about 4 times double precision. The confidence interval computation is sometimes numerically challenging, and the extra precision can be helpful (though computationally more costly). In particular, extra precision might be tried if the values in the output columns of tailarea differ noticeably from alpha/2.

Details

This function computes selective confidence intervals based on the polyhedral lemma of Lee et al. (2016).

Value

int Selective confidence interval.

tailarea Realized tail areas (lower and upper) for each confidence interval.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2016). Exact post-selection inference, with application to the lasso. Annals of Statistics, 44(3), 907-927.

Jonathan Taylor and Robert Tibshirani (2017) Post-selection inference for math L1-penalized likelihood models. Canadian Journal of Statistics, xx, 1-21. (Volume still not posted)

Examples

```
A = diag(5)
b = rep(1, 5)
Z = rep(0, 5)
Sigma = diag(5)
eta = as.numeric(c(1, 1, 0, 0, 0))
TG.interval(Z, A, b, eta, Sigma)
```

TG.limits

Truncation limits and standard deviation.

Description

Compute truncated limits and SD for use in computing p-values or confidence intervals of Lee et al. (2016). Z should satisfy A

Usage

```
TG.limits(Z, A, b, eta, Sigma)
```

44 TG.limits

Arguments

Z	Observed data (assumed to follow N(mu, Sigma) with sum(eta*mu)=null_value)
Α	Matrix specifiying affine inequalities AZ <= b
b	Offsets in the affine inequalities $AZ \le b$.
eta	Determines the target sum(eta*mu) and estimate sum(eta*Z).
Sigma	Covariance matrix of Z. Defaults to identity.

Details

This function computes the limits of truncation and the implied standard deviation in the polyhedral lemma of Lee et al. (2016).

Value

vlo	Lower truncation limits for statistic
vup	Upper truncation limits for statistic
sd	Standard error of sum(eta*Z)

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2016). Exact post-selection inference, with application to the lasso. Annals of Statistics, 44(3), 907-927.

Jonathan Taylor and Robert Tibshirani (2017) Post-selection inference for math L1-penalized likelihood models. Canadian Journal of Statistics, xx, 1-21. (Volume still not posted)

```
A = diag(5)
b = rep(1, 5)
Z = rep(0, 5)
Sigma = diag(5)
eta = as.numeric(c(1, 1, 0, 0, 0))
TG.limits(Z, A, b, eta, Sigma)
```

TG.pvalue 45

TG.pvalue	Truncated Gaussian p-value.	
10.514146	Truncated Gaussian p value.	

Description

Compute truncated Gaussian p-value of Lee et al. (2016) with arbitrary affine selection and covariance. Z should satisfy A

Usage

```
TG.pvalue(Z, A, b, eta, Sigma, null_value=0, bits=NULL)
```

Arguments

bits

Z	Observed data (assumed to follow N(mu, Sigma) with sum(eta*mu)=null_value)
Α	Matrix specifiying affine inequalities AZ <= b
b	Offsets in the affine inequalities $AZ \le b$.
eta	Determines the target sum(eta*mu) and estimate sum(eta*Z).
Sigma	Covariance matrix of Z. Defaults to identity.
null_value	Hypothesized value of sum(eta*mu) under the null.

Number of bits to be used for p-value and confidence interval calculations. Default is NULL, in which case standard floating point calculations are performed. When not NULL, multiple precision floating point calculations are performed with the specified number of bits, using the R package Rmpfr (if this package is not installed, then a warning is thrown, and standard floating point calculations are pursued). Note: standard double precision uses 53 bits so, e.g., a choice of 200 bits uses about 4 times double precision. The confidence interval computation is sometimes numerically challenging, and the extra precision can be helpful (though computationally more costly). In particular, extra precision might be tried if the values in the output columns of tailarea differ noticeably

from alpha/2.

Details

This function computes selective p-values based on the polyhedral lemma of Lee et al. (2016).

Value

pv	One-sided P-values for active variables, uses the fact we have conditioned on the sign.
vlo	Lower truncation limits for statistic
vup	Upper truncation limits for statistic
sd	Standard error of sum(eta*Z)

TG.pvalue

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Jason Lee, Dennis Sun, Yuekai Sun, and Jonathan Taylor (2016). Exact post-selection inference, with application to the lasso. Annals of Statistics, 44(3), 907-927.

Jonathan Taylor and Robert Tibshirani (2017) Post-selection inference for math L1-penalized likelihood models. Canadian Journal of Statistics, xx, 1-21. (Volume still not posted)

```
A = diag(5)
b = rep(1, 5)
Z = rep(0, 5)
Sigma = diag(5)
eta = as.numeric(c(1, 1, 0, 0, 0))
TG.pvalue(Z, A, b, eta, Sigma)
TG.pvalue(Z, A, b, eta, Sigma, null_value=1)
```

Index

```
* package
    selectiveInference, 38
coef.fs, 15
coef.fs (predict.fs), 28
coef.lar, 21
coef.lar(predict.lar), 29
debiasingMatrix, 2
estimateSigma, 4, 7, 16, 22
extractAIC, 19
factorDesign, 6, 19
fixedLassoInf, 6, 39
forwardStop, 12, 17, 23
fs, 14, 16–18, 39
fsInf, 15, 15, 20, 39
groupfs, 6, 18, 19, 20, 29, 38
groupfsInf, 19, 19
lar, 20, 24, 39
larInf, 21, 22, 39
manyMeans, 25, 39
plot.fs, 15, 26
plot.lar, 21, 27
predict.fs, 15, 28
predict.groupfs, 29
predict.lar, 21, 29
randomizedLasso, 30
randomizedLassoInf, 33
ROSI, 35
scaleGroups, 38
selectiveInference, 38
step, 18, 19
TG.interval, 42
TG.limits, 43
TG.pvalue, 45
```